SET Secure Electronic Transaction

Stan Bühne
Page 6
18.09.00

SET

Secure Electronic Transaction
​​​​​​​​​​​​​​​​​​​​​

Essay

IPICS 2000 Stockholm

© by Stan Bühne – University of Essen – Germany – September 2000

Stan Bühne

Universtiy of Essen

Student ID: 118 99 88

Table of Contents

1. Introduction

1.1. The need of secure electronic transactions

1.2. Requirements for secure electronic transactions

1.3. The evaluation of SET

2. Concepts

2.1. Cryptography
2.1.1. Encryption
2.1.2. Digital Signature

2.1.3. Dual Digital Signature

2.2. Certificate Issuance

2.3. Hierarchy of Trust

2.4. Participants

3. Payment Processing

3.1. Overview

3.2. Cardholder Registration

3.3. Purchase Request

3.4. Payment Authorisation

3.5. Payment Capture

4. Conclusion

5. Literature

1. Introduction

1.1. The need of secure electronic transactions

In our times the Internet is getting more and more popular. “Everybody” is surfing around in the virtual world of the Internet. Every day new Internet sites appear in the WWW which offer information, services and goods. Some of this services are supplied for free but others you have to pay. Especially the new media products, like eBooks, mp3, pictures, videos, etc., are sold online. Here it’s getting more and more important to find a secure way to purchase this services in a secure way for the customer as well as for the merchant.

For the purchase we have several options, eCash, EC – Card or credit card. The most common for eCommerce is the credit card because many people already have one and they are already in use for common shopping (e.g. in restaurants, shopping centres …).

But in reality not many people use their credit cards with a clear conscience in the internet – and there is a good reason!

The most internet traffic crosses the internet as plaintext, even our credit card numbers and other sensitive data. That means nearly everybody is able to sniff our mails, sent or requested internet sites (sniff behaviour), … and also our account information if this sites do not support a secure channel like SSL. The SSL protocol provides at least authentication of the merchant and confidentiality of data.

But we cannot be sure what is happening with our data at the merchants system. May we have a SSL connection to the merchant and the data is passing the internet encrypted, but the merchant will store all information (Name, Address, Account number, Credit card number, …) in his costumer database and under some circumstances somebody is hacking his system and steeling the database with all information, then the theft is also having all stored credit card numbers etc. We don’t have to go more in detail what will happen next... all we have to hold in mind is that it is not only important to have a secure internet transaction, it’s more important to trust the merchant and his system.

Therefore it is important that the merchant is authorised to accept credit cards (by a Trusted Third Party) and that he is just storing data of customer, that is not giving any sensitive information like the account numbers etc.

This are several reasons why a standard for secure electronic transactions is needed. With the SET Specification a standard for secure transactions is provided by MasterCard and VISA. In the following sections the SET Specification is described in more detail.

1.2. Requirements for secure electronic transactions

SET major requirements:

· Confidentiality of payment and order information

· Integrity of all transmitted data

· Authentication of cardholder account

· Authentication of merchant

· Anonymity of customer

· Interoperability among software and network providers

Confidentiality of payment and order information

The data travelling across the network needs to be secured. That means that data is encrypted with the public key of the recipient, so only the recipient is able to decrypt the data with his private key.

Therefore transmitted data through the Internet is only known by the originator and the recipient of the data.

Integrity of all transmitted data

To guarantee that the data is not altered during the transmission between originator and recipient the data is signed with a digital signature. That means the recipient is able to check the integrity of the received data.

Authentication of cardholder account

The merchant needs a way to verify that cardholder is the legitimated user of his branded credit card number.

Authentication of merchants

Also the customer needs to be sure, that a merchant has a relationship with a financial institution allowing to accept payment cards, so that he securely knows with whom he is dealing.

Anonymity of customer

The customer needs the anonymity he is used to, as if he is paying cash. That means the bank should not be able to analyse the behaviour of the customer and the merchant should not be able to analyse the financial situation of the customer.

Interoperability among software and network providers

The most important for today’s acceptance is that a product can be used anywhere and form any body. That means the specification must be applicable on a variety of hardware and software platforms.

1.3. The evaluation of SET

SET was developed on the need of secure transactions over open networks. The SET Specification was not the first idea of secure transactions for credit cards. First MasterCard and VISA were developing their own specifications.

STT (Secure Transaction Technology) by Microsoft and VISA

SEPP (Secure Electronic Payment Protocol) by IBM and MasterCard

In 1995 MasterCard and VISA have developed the Secure Electronic Transaction protocol in a joint venture together with IBM, Microsoft, Netscape, RSA and VeriSign.

The SET protocol has been published as an open Specification for the industry.

The SET protocol is not a software application it’s “just” an Open Specification for software vendors to develop these applications for banks, merchants and customer.

SET Specification does not cover the shopping act or the delivery of goods, it concentrates on the main process the Purchase Transaction, which includes

· Payment Authorization of each Party
· Inquiry and Confirmation of Purchase
· Merchant Reimbursement
And therefore provides the three phases of security:

· Integrity

· Authentication

· Confidentiality

2. Concepts

2.1. Cryptography

The following table shows the used data notation

	signX(Data)
	Signature of entity X on Data

	CryptK1(Data)
	Symmetric encryption with Key K1 on Data

	dualsignX(F, G)
	Dual signature of entity X on F linked to G

	CryptPubX(Data)
	Asymmetric encryption with the public key of X on Data

	C
	Cardholder, customer

	M
	Merchant

	P
	Payment Gateway (Acquirer bank / Merchant bank)

	SignCertX
	Signature Key Certificate of entity X

	CryptCertX
	Key – Exchange Key Certificate of entity X

	h(Data)
	Hash of Data / Message Digest of Data

2.1.1. Encryption

To ensure confidentiality it’s necessary to provide encryption.

SET uses asymmetric encryption as well as symmetric encryption.

The asymmetric encryption is used for both signatures and encryption of symmetric keys. For the asymmetric encryption SET uses RSA.

The symmetric encryption is used to encrypt message data, with a fresh generated (private) session key. In SET symmetric encryption is realised with DES.

2.1.2. Digital Signature

To ensure authentication and integrity digital signatures are provided in SET.

Because of the mathematical relationship between public and private keys, data encrypted with either key can only be decrypted with the other. That means if a customer is encrypting data with his private key, anybody who is able to decrypt the message with the public key of the sender, can be sure that the message could only be from the customer. (Authentication)

Additionally when the customer is creating a message digest (h(m)) of the message and encrypting this with his private key, the recipient can first of all check the authentication of the sender by decrypting the message digest (h(m)) and then by creating his own message digest of the received message and comparing it to the prior encrypted message digest.

If the h(m)customer = h(m)receiver he can be sure that the message has not been altered during transmission. (integrity)

2.1.3. Dual Digital Signature

This is a new created concept for SET. To understand the need of dual signature, consider the following scenario:

Bob wants to send Alice an offer to purchase some goods and an authorisation to his bank to transfer money if Alice accepts his offer. Further, Bob doesn’t want the bank to see the terms of his offer nor he wants Alice to see his account information (e.g. his credit card number). Additionally, Bob wants to link the offer to the transfer, that means only if Alice accepts his offer the money will be transferred.

All of this can be provided by digitally signing both messages with a single operation that creates the Dual Signature.

Example:

Generating a Dual Signature (Bob)

1. computing hash of OI, PI

Order Information
(OI)
(
h(OI)

Payment Instruction
(PI)
(
h(PI)

2. concatenating h(OI), h(PI)

3. computing hash of result
(dual hash = h(h(OI), h(PI))

4. dualsign Bob = (Sign Bob (Dual hash))

5. Sent message PReq to Alice

	[image: image1.jpg]

	Sign Bob (Dual hash), OI, h(PI), CryptPubp (PI)

Alice receives and processes:

1. Decrypt Bob, pub (Sign Bob (Dual hash)) (dual hash1

2. build h(OI)

3. concatenate h(OI), h(PI) - h(PI) from message

4. build h(h(OI), h(PI)) (dual hash2

5. Boolean compare dual hash1 = dual hash2 ?

6. If true, send AuthReq to bank

	[image: image2.jpg]

	Sign Bob(Dual hash), h(OI), CryptPubp (PI)

Bank receives and processes:

1. Decrypt Bob, pub (Sign Bob (Dual hash)) (dual hash1

2. Decrypt payment gateway (encrypt payment gateway, pub (PI)) (PI

3. build h(PI)

4. concatenate h(OI), h(PI) - h(OI) from message

5. build h(h(OI), h(PI)) (dual hash2

6. Boolean compare dual hash1 = dual hash2 ?

7. If true …
2.1.3. Dual Digital Signature, continued
A dual signature is generated by creating the message digest (hash) of both messages, concatenating the two hashes together, computing the hash of the result and encrypting this with the signer’s private key. The signer has to include the hash of one and the data of the other message (sign(dualhash), h(PI), OI) in order for the recipient to verify the dual signature. A recipient of either message can check its authenticity by generating the hash on his copy of the data, concatenating it with the other hash (as provided), computing the hash of the result and comparing the newly generated hash with the one provided.

If the result is true, the recipient can trust the authenticity of the message, even if he don’t know the plaintext of the other message.

2.2. Certificate Issuance

In SET end entities may be issued a signature and/or an encryption certificate.

All SET certificates contain:

· version,

· serial number,

· signature algorithm,

· issuer,

· validity,

· certificate owner,

· public key algorithms,

· public key of the owner,

· specific SET extensions.

· Signature of the issuer CA

Cardholder Certificates

Cardholder certificates are for an electronic representation of the credit card. Because a financial institution digitally signs them a third party is not able to alter them. For secure reasons the certificate does not contain the account number and expiration date as plaintext. Instead the cardholder certificate contains the Cardholder ID. This the keyed – hash of the primary account number (PAN), a shared secret value (PANSecret) and the expiration date.

The PANSecret is a hashed value that comprises the Cardholder secret value (CardSecret) and a CCA’s secret value (Nonce-CCA) and is only known by the cardholder’s software.

Hence only if the account number, expiration date and the secret value are known, the link to the certificate can be proven, in order that the information cannot be derived by looking at the certificate. Within the SET protocol the cardholder supplies the account information and the secret value to the payment gateway where the link is verified (Authentication of the cardholder).

· The Cardholder is only issued a Signature Certificate

Merchant Certificates

Merchant certificates function as an electronic substitute for the payment brand label that appears in the store window. The label itself is a representation that the merchant has a relationship with a financial institution allowing it to accept the payment card brand. These certificates are approved by the acquiring financial institution and provide assurance that the merchant holds a valid agreement with an Acquirer.

A merchant must have at least one pair of Certificates (for the Key – Exchange Key and the Signature – Key) to participate in the SET environment. He will need a pair of Certificates for each payment card brand.

(
Merchants are issued both: Signature Certificates and Encryption Certificates

2.3. Hierarchy of Trust

SET certificates are verified through a hierarchy of trust. Each certificate is linked to the issuer of the certificate who has digitally signed it (the entity above). To verify a certificate we have to follow up the trust tree to a known trusted party. For example a cardholder certificate is issued by his bank. A merchant who wants to verify it, he has to follow up the link (to the signer of this certificate) until he has reached a CA he’ll trust. At least the Root CA he has to trust this is the CA all SET software applications know. The root certificate is signed by itself.

[image: image3.wmf]Brand

Signature

R

GCA

Signature

B

CCA

Signature

G

MCA

Signature

G

PCA

Signature

G

Cardholder

Signature

CA

Merchant

Signature

CA

Merchant

Key Exchange

CA

Payment Gateway

Signature

CA

Root

Signature

R

Payment Gateway

Key Exchange

CA

Diagram 1 – Hierarchy of Trust Model

The shown Hierarchy of Trust Model illustrates the certification based on the

CA – Architecture (Diagram 2)

2.3. Hierarchy of Trust, continued
The CA – Architecture illustrates the (hierarchical) organisational structure of the Certification Authorities. Depending on this structure the Hierarchy of trust results.

[image: image4.wmf]Optional

Payment Gateway

Certificate Authority

(PCA)

Payment Gateway

(PGWY)

Root

Certificate Authority

(RCA)

Brand

Certificate Authority

(BCA)

Geo-Political

Certificate Authority

(GCA)

Merchant

Certificate Authority

(MCA)

Merchant

(Mer)

Cardholder

Certificate Authority

(CCA)

Cardholder

(Card)

Diagram 2 – CA Architecture

As we can see in the diagram the Root CA is on top of the tree, the RCA is serving several payment card brands (BCA) which each can have a Geo – Political CA (GCA) if necessary. They serve the CAs for Cardholder (CCA), Merchant (MCA) and Payment Gateway (PGWCA).

· The Cardholder CA could be operated by the bank of the cardholder

· The Merchant CA could be operated by the payment brand or an Acquirer

· The PGWY CA may be operated by a payment brand, an Acquirer, or another party according to payment brand rules.

2.4. Participants

Cardholder

In the electronic commerce environment, consumers and corporate purchasers interact with merchants from personal computers. A cardholder uses a payment card that has been issued by an Issuer (e.g. the cardholder’s bank). SET ensures that in the cardholder’s interactions with the merchant and the payment card account information remains confidential.

Merchants

A merchant offers goods or provides services in exchange for payment. With SET, the merchant is able to offer its cardholders secure electronic interactions. A merchant that accepts payment cards must have a relationship with an Acquirer.

Issuer

An Issuer is a financial institution that establishes an account for a cardholder and issues the payment card. The Issuer guarantees payment for authorized transactions by using the issued payment card.

Acquirer

An Acquirer is the financial institution that establishes an account with a merchant and processes payment card authorizations and payments.

Payment Gateway

A payment gateway is a device operated by an Acquirer or a designated third party that processes merchant payment messages, including payment instructions from cardholders

[image: image5.jpg]

Diagram 3 – SET Architectural Overview

3. Payment Processing
3.1. Overview

The SET protocol supplies the following features

· Cardholder Registration

· Merchant Registration

· Purchase Request

· Payment Authorisation

· Payment Capture

Diagram 3 illustrates a high – level overview of the SET Architecture and its participants. One of the most important aspects in this specification is the Purchase Transaction as illustrated in Diagram 4. The different steps through the SET – Purchase Transaction are numbered from (1) – (10) in the Diagram.

The cardholder is first crawling through the merchants range and selecting items. If the cardholder wants to purchase his order, he sends and Initiate Request (where he also indicates which payment card brand he’ll use) to the merchant and the merchant will give the Initiate Response if he is providing this card brand. Now the Purchase Transaction starts up as follows:

Purchase Transaction:

Purchase Request

Step (1) and (7)
Payment Authorisation
Step (2), (3), (4), (5), (6)
Payment Capture

Step (8), (9), (10)
[image: image6.jpg]EFTTo

Diagram 4 – Purchase Transaction Overview

3.2. Cardholder Registration

Before Set can be used for transactions between cardholder and merchants, both have to register at their specific CA (see above). In the following section the registration of the cardholder will be descript. Diagram 5 will give you an overview of an interactive Cardholder Registration like provided on the WWW.

	Cardholder
	CardCInitReq

[image: image7.wmf]
	CCA

	
	CardCInitRes

[image: image8.wmf]
	

	
	RegFormReq

[image: image9.wmf]
	

	
	RegFormRes

[image: image10.wmf]
	

	
	CCertReq

[image: image11.wmf]
	

	
	CCertRes

[image: image12.wmf]
	

Diagram 5 – Cardholder Registration

The registration request is started when the cardholder software requests a copy of the CCA’s key – exchange certificate (e.g. by clicking a button on a Web page). If the application is started the following variables are created and send to the CCA.

	RRPID
	Random number – Request Response Pair ID

	LID–EE / (CA)
	Local identifier generated by and for cardholder / (by and for CCA)

	Chall–EE
	Random number

	BrandID
	Cardholder’s payment card brand ID

	Thumbs
	List of known certificates and Fingerprints

	[image: image13.jpg]

	CardCInitReq = RRPID, LID–EE, Chall–EE, BrandID, [Thumbs]

When the CCA receives the request, it computes the message and transmits its certificates and CInitResData to the cardholder. The CCA key-encryption certificate provides the cardholder software with the information necessary to protect the payment card account number in the registration form request later on.

	[image: image14.png]

	CardCInitRes = signCA(CInitResData) SignCertCA, CryptCertCA

	CinitResData
	{RRPID, LID–EE, Chall–EE, [LID–CA], CAAThumb, [Thumbs]}

3.2. ​​​​Cardholder Registration, continued
The cardholder software verifies the CCA certificate by traversing the trust chain to the root key. The software must hold the CCA certificates to use later during the registration process. Now the cardholder software can create a registration form request message (RegFormReq). After that the software generates a random symmetric encryption key (K1) and uses this key to encrypt RegFData. The random key (K1) is then encrypted along with PANOnly into the digital envelope using the CCA public key-exchange key. Finally, the software transmits all of these components to the CCA.

	[image: image15.jpg]

	RegFormReq = CryptK1(RegFData), CryptPubCA(K1, PANOnly)

	RegFData
	{RRPID, LID–EE, Chall–EE2, [LID–CA], RequestType, Language, [Thumbs]}

	RequestType
	Kind of Certificate (e.g. Signature Certificate)

	Language
	The desired language for the dataflow

	PANOnly
	{PAN, EXNonce}

	PAN
	Cardholder’s payment card number

	EXNonce
	Fresh Random number to mask the PAN

The CCA decrypts the symmetric key (K1) and PANOnly, identifies the cardholder’s financial institution (using the first six to eleven digits of the account number), decrypts the CertReqData and verifies it then selects the appropriate registration form, digitally signs and sends it to the cardholder.

	[image: image16.png]

	RegFormRes = SignCA(RegForm), SignCertCA

The cardholder software receives registration form and verifies CA certificate. Then it verifies the CA signature by decrypting it with the CA public signature key and comparing the result with a newly generated hash of the registration form. Now the Cardholder software creates one pair of asymmetric keys (Signature Keys) and two symmetric keys (K2, K3). When the cardholder has completed the registration form (RegForm) by filling in the PAN, expiration date, etc., the software generates the certification request (CCertReq) as follows.

	[image: image17.jpg]

	CCertReq = CryptK3(signC(CertReqData, SignPubC, K2)) CryptPubCA(K3, AccntInfo)

	CertReqData
	{RRPID, LID–EE, Chall–EE3, [LID–CA], [Chall–CA] RequestType, RequestDate, RegFormID, PubSigKey, [Thumbs]}

	AccntInfo
	{PAN, CardExpiry, CardSecret, EXNonce}

	CardSecret
	160 Bit Random Number created by the Cardholder part of the secret shared between Cardholder and CCA, the other one is the CA–Nonce

3.2. Cardholder Registration, continued
When the CCA receives the cardholder’s request, it decrypts the digital envelope to obtain the symmetric encryption key (K3) and AccntInfo. It uses the K3 to decrypt the registration request data (CertReqData), and then uses the signature key in the message to ensure the request was signed using the corresponding private signature key. If the signature is verified, the process continues with the verification of CertReqData and AccntInfo by verifying that the Chall–CA matches the one sent in RegForm, verifying the PAN, etc.

If the information provided is verified the CCA generates a random number (CA–Nonce – this is the other half of the shared secret between cardholder and CCA). After that the CCA creates the Cardholder Certificate digitally signs it and generates a response message (CertResData) as follows.

	CertResData
	{RRPID, LID–EE, Chall–EE3, [LID–CA], CertStatus, [CertThumbs], [Thumbs]}

	CertStatus
	{CertStatCode, [Nonce-CCA], [CardholderMsg]}

	CardholderMsg
	Message to the cardholder (e.g. Registration finished successful)

	CertThumbs
	Fingerprints of the issued Certificates

Decrypts the signed data with the received K2 and send it to the cardholder

	[image: image18.png]

	CCertRes = CryptK2(signCA(CertResData)), SignCertCA, SignCertC

When the cardholder’s software receives the CCertRes from the CA, it stores the certificate on the computer. Then the it decrypts the CertResData with his stored K2 and combines the random number Nonce–CA with CardSecret (prior sent to the CA) and stores the secret number (PANSecret) to use it with the certificate.

3.3. Purchase Request

An Overview

	Cardholder
	PinitReq
[image: image19.wmf]
	Merchant
	
	Payment Gateway

	
	PInitRes
[image: image20.wmf]
	
	
	

	
	PReq
[image: image21.wmf]
	
	
	

	
	
	
	AuthReq
[image: image22.wmf]
	

	
	
	
	AuthRes
[image: image23.wmf]
	

	
	PRes
[image: image24.wmf]
	
	
	

	
	
	
	CapReq
[image: image25.wmf]
	

	
	
	
	CapRes
[image: image26.wmf]
	

Diagram 6 – Payment Process Structure

After the cardholder has completed browsing and selecting his items the SET Protocol is invoked. The Payment Process starts with the PInitReq (Purchase Initiation Request).

	PInitReq
	{RRPID, Language, LID-C, [LID-M], Chall-C, BrandID, BIN, [Thumbs], [PIRqExtensions]}

	LID-C (M)
	Local ID, from cardholder (merchant) system

	Chall-C
	Cardholder Challenge (random number)

	BIN
	Bank identification number from the cardholders account no.

Sent PInitReq to merchant

	[image: image27.jpg]

	PInitReq

When merchant receives PInitReq the merchant software generates a response – PInitRes. The PInitRes contains the PInitResData, signed by the merchant, the merchant SignCertM and the Payment Gateway’s CryptCertp .

	PInitResData
	{TransIDs, RRPID, Chall–C, Chall–M, PEThumb, [Thumbs]}

	TransIDs
	{LID-C, [LID-M], XID, PReqDate, Language}

	XID
	Globally unique ID: Random number

	PReqDate
	Date of purchase request; generated by Merchant

	PEThumb
	Thumbprint of Payment Gateway key-exchange certificate.

3.3. Purchase Request, continued

	[image: image28.png]

	PInitRes = signM (PInitResData), SignCertM, CryptCertP

The cardholder software verifies the supplied certificates (SignCertM, CryptCertP) and stores them for the following transaction.

Creates the Order Information (OI) and the Payment Instructions (PI) Data and computes a dual signature for OI and PI. Next it creates a fresh symmetric encryption Key (K1) and finally builds the PReq as follows.

	[image: image29.jpg]

	PReq =

dualsign C(OI, PI), OI, h(PI), CryptK1(PI dualsign C(OI, PI), h(OI)), CryptPubP(K1, PANData), SignCertC

	OI
	{TransIDs, RRPID, Chall-C, HOD, ODSalt, Chall-M, BrandID, BIN}

	HOD
	h(OD, PurchAmt, ODSalt) (Links OI to PurchAmt

	OD
	Order Description – ordered articles

	ODSalt
	Fresh random number

	PurchAmt
	Amount of the transaction

	PI
	{PIHead, PANData}

	PIHead
	{TransIDs, HOD, PurchAmt, MerchantID, TransStain, SWIdent}

	TransStain
	HMAC(XID, CardSecret)

	SWIdent
	Version of Software

	PANData
	{PAN, Card Expiry, PANSecret, EXNonce}

When the merchant software receives the response, it verifies the signature certificate of the cardholder. Then it verifies the dual signature on OI, by decrypting dualsign C(OI, PI) with the public signature key of the cardholder, computing the h(OI) concatenating it with h(PI), building the hash of the result and comparing it with the prior encrypted dual hash. Next the merchant starts the Payment Authorisation

If the response (AuthRes) of the payment gateway was positive, the Merchant will continue with the Purchase Response (PRes).

The merchant software now creates the purchase response data as follows.

	[image: image30.png]

	PReq = signM (PurchData), SignCertM

	PurchData
	{TransIDs, RRPID, Chall-C, PResPayloadSeq}

	PResPayloadSeq
	Merchants information about the processing of the purchase request

When the cardholder’s software receives the data, it verifies the SignCert and the signed data for integrity. After checking the correctness, the software will store the data of the transaction into the database and give the cardholder a response of the transaction (e.g. Message: “Transaction completed successful”) .

3.4. Payment Authorisation

Usually before the Purchase Request ends, the merchant starts up the Payment Authorisation to examine the cardholder’s solvency. If the cardholder bank commits his solvency, the Purchase Response will be sent.

Now we’ll concentrate on the Payment Authorisation of the merchant.

First the merchant software creates an authorisation request and digitally signs it with the private signature key. Next it creates a random symmetric key (K2) and encrypts it with the public key of the payment gateway. Along with the data, received from the cardholder in the PReq belonging to the payment gateway (CryptK1(dualsign C(OI, PI), CryptPubK1(K1, PANData)), the software creates the Authorisation Request (AuthReq)

	[image: image31.jpg]

	AuthReq = CryptPubP(K2), CryptK2(AuthReqData), CryptK1(PI, dualsign C(OI, PI), h(OI))

CryptPubP(K1, PANData), SignCertC, SignCertM, CryptCertM

	AuthReqData
	{AuthReqItem, [MThumb], CaptureNow, [SaleDetail]}

	AuthReqItem
	{AuthTags, [CheckDigest], AuthReqPayload}

	AuthTags
	{AuthRRTags, TransIDs, [AuthRetNum]}

	AuthRRTags
	The same as RRTags = RRPID & Date

	CheckDigest
	{h(OI), HOD2}

	SaleDetail
	The sale detail carries information from the Merchant necessary for the Payment Gateway to produce a clearing request message.

The payment gateway receives the message, verifies the cardholder and merchant certificates, decrypt K1, K2 and PANData with the private key of the payment gateway. Next decrypt PI with the symmetric key (K1) and AuthReqData with (K2). Now the gateway verifies the cardholders dual signature on PI by decrypting it with the public key of the cardholder and comparing it to the result of his computed h(h(OI),h(PI)).

Next the gateway ensures the consistency between the authorisation request and the cardholders PI by comparing the TransIDs from AuthTags and PIHead. The following steps are to ensure the correctness of the received data.

First the gateway ensures that the brand on the certificate is provided, then it verifies the PANData and the if Unique Cardholder ID (hMAC(PAN, PANSecret…) on Certificate matches the PANData, and finally stores PANData.

After that the gateway verifies the PIHead by ensuring that the MerchantID matches the one of the merchant certificate, comparing h(OI)CheckDigest with h(OI)PI and HOD to HOD2. Finally it stores PIHead.

Now the AuthRes is created by the payment gateway. First two new symmetric keys (K3, K4) are generated. The AuthResData is signed with the signature key and encrypted with K3. Then the symmetric key K3 is encrypted with the public key exchange key of the merchant. The Capture Token is created, digitally signed and encrypted with K4, which now is encrypted with the public key exchange key of the payment gateway.

3.4. Payment Authorisation, continued
	[image: image32.png]

	AuthRes = CryptPubP(K4), CryptK4(signP(CapToken)), CryptPubM(K3), CryptK3(signP(AuthResData)) SignCertP

	CapToken
	{AuthRRPID, AuthAmt, TokenOpaque}

	AuthRRPID
	{RRPID, MerchantID, Date}

	TokenOpaque
	Opaque of the payment gateway

	AuthResData
	{AuthTags, [BrandCRLIdentifier], [PEThumb]}

When merchant software receives the message, it decrypts the digital envelop, then decrypts the AuthResData and verifies the signature of the payment gateway. Merchant software then ensures that the response belongs to the transaction by comparing the AuthTags of AuthResData and the sent request. Finally the software stores the AuthResData and the CaptureToken with the digital envelop for the Payment Capture Request and continues with the Payment Capture (page 20).

3.5. Payment Capture

The last process of the Purchase Transaction is the Payment Capture. After a completed order, the merchant will request payment in this process.

The merchant software now will generate the Capture Request Data (CapReqData) and digitally signs it

	CapReqData
	{CapRRTags, [MThumbs], CapItemSeq}

	CapRRTags
	Fresh RRPID and Date

	CapItemSeq
	{TransIDs, AuthRRPID, CapPayload} +

	MThumbs
	Fingerprint of Certificates, CRL’s currently held in cache of merch.

	CapPayload
	Date of Capture and Capture amount

After that it will generate a symmetric random key (K5) to encrypt the signed data. And the key K5 is encrypted with the public key of the Gateway and sent along with CapReqData and the received CapToken of the Payment Gateway.

	[image: image33.jpg]

	CapReq = CryptPubP(K5), CryptK5(signM(CapReqData)), CryptPubP(K4), CryptK4(signP(CapToken)) SignCertM, CryptCertM

When the Payment Gateway receives the message, it decrypts the symmetric keys (K4, K5) with their private Key – Exchange Key, then decrypts the data (CapToken, CapReqData) and verifies their signatures. Now the software verifies that the CapToken and CapReqData belong to the appropriate transaction and that no value has been changed (e.g. retrieve transaction record of this TransIDs and compare XID, LID–C, LID–M …) or CapToken has already been redeem.

If all verifications are successfully completed, the software generates a random symmetric key (K6) and composes a response as follows.

	[image: image34.png]

	CapRes = CryptPubM(K6), CryptK6(signP(CapResData)) SignCertP

	CapResData
	{CapRRTags, [PEThumb], CapResItemSeq}

	CapResItemSeq
	{TransIDs, AuthRRPID, CapResPayload} +

When the merchant Software receives the response, it decrypts (K6) with its private Key – Exchange Key afterwards it decrypts the CapResData with K6 and verifies the signature of the Payment Gateway. Next the software retrieves the transaction record back to ensure that the CapRRTags matches to the prior sent of the CapReqData. Finally it stores the CapResItemSeq and to the database until the payment is received from the Acquirer Bank.

The final transaction from the merchant bank to the customer bank and the transaction communication between them is not provided in SET. The data transactions between the banks are done in their private financial network (SWIFT). This is a secure network so it needn’t be secured with the SET Protocol.

4. Conclusion

The security aspects of SET are threefold, first SET provides mutual identification / authentication of each party (Customer, Merchant, Bank). Second SET provides integrity of data with digital signatures and third SET provides confidentiality of data with encryption and dual signatures.

Within the SET protocol the interests of all parties are covered:

· The merchant can be sure, that the cardholder is the owner of the credit card and that he is solvency.

· The cardholder can be sure that the merchant, he is dealing with accepts his credit card. And that sensitive data like account information is not stored at the merchants system after the transaction.

· The bank will have a decrease of customer claims and fraud with credit cards because sensitive data like the card number is protected by encryption.

Why however until today, almost 5 years later, the spreading of SET is so small, can be explained only by the costs to spent for security. Also today still the economic thought decides before the thought of security, in most businesses. The problem is when the pretended costs of fraud and Exploits are smaller than the costs of the new security solution the insecure system will stay, until the trade of between economy and security changes. This is the so called “Security trade of”.

Anyway in the longer term more and more services and goods are provided via the internet. And if the eCommerce increase holds on, the consumer will demand a secure system for his transactions and then the industry has to provide a secure system for the consumer. It doesn’t matter if it then is called SET or differently!

5. Literature
Links to SET in the WWW:

www.rsa.com
www.visa.com
www.mastercard.com
www.setco.org
Papers about SET:
SET – Specification Book 1: Business Description; May 31, 1997 by www.setco.org
SET – Specification Book 2: Programmers Guide; May 31, 1997 by www.setco.org

Purchase Transaction

