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THE BANACH-TARSKI-PARADOX

To choose one sock from each of infinitely many pairs of socks requires the Aziom
of Choice, but for shoes the Azxiom is not needed.

(Bertrand Russell)

The Aziom of Choice was first formulated by Ernst Zermelo' in 1904, and since that time, there
is a controverse discussion about it till nowadays. The reason for this is the fact that it is possible
to derive some properties which seem to be contrary to our experience. One of the most popular
paradoxes of this kind is the Banach-Tarski-Paradoz.

1 Basic Facts

AXI10M OF CHOICE Suppose a class of non-empty sets {M; | i € I} with non-empty index set I.
Then there exists a ”"choice-mapping”

fiI—JM;

i€l
with f(i) € M; for all i € I.
1.1 Definition We define the closed unit ball
Sy = {z e R*| o] <1}

and the unit sphere [
083 = {z eR® | ||z| = 1}.

1.2 Definition SOj is defined to be the group of all orthogonal 3 x 3-matrices with determinant 1.
If A € SO is arbitrary, then it is always possible to choose an orthonormal base of R? in such a
way that A can be brought to the form

cosa sina 0
—sina cosa 0

0 0 1

1.3 Definition Let G be a group and X # () an arbitrary set. G operates on X, if there exists a
mapping e : G x X — X, (g,x) — g e x with

(01) (gh)exz = ge(hex)foral g heG, xeX;

(02) eex = x for the neutral element ¢ and all z € X.

1.4 Definition Suppose an arbitrary set X and a group G which operates on X. A subset
E C X is called G-paradoz, if there exist some numbers n,m € N, pairwise disjoint sets
Ay, ..., An, By, ..., By, C E and elements g1, ..., gn, A1, ..., by € G such that

m

E = U gieAi = |J hjeB;.
i=1 J

i=1

IErnst Friedrich Ferdinand Zermelo, born on 27.07.1871 in Berlin, and died on 21.05.1953 in Freiburg.



To illustrate the term ”paradox” in this definition we can look at the following

1.5 Example Suppose F := X := S3 to be the set of all points of the closed unit ball and
G := SOs3 the group of rotations in R3, which should operate on X. Suppose E to be G-paradox,
then we could split F in pairwise disjoint parts A4, ..., A,, B, ..., By, € E and apply some rotations
1y -y Gns N1y ooy By € G to them. Afterwards we put together the rotated parts and obtain two
closed unit balls E1 = J;_, gi e A; and E» = J;_, h; e B; identical with E! So by splitting the
ball and rotating its parts in some way we would double the volume! Indeed paradox!?

Suppose a group F' which is restricted only by the group axioms and nothing else. We can call
such an "ideal” group a free group. Such a free group is usually constructed in the following way:

1.6 Definition Suppose a set of letters {f; | i € I} and define some new symbols {f; " | i € I}.
Now we build words by putting these letters together like fi'--- fi" with €1,...,e, € {~1,1}. We
call such a word a reduced word if we put out all terms of the form fff,”“. Furthermore we define
the empty word e.

If F is now defined to be the set of all reduced words over {f;, f,t-_1 | © € I} together with the
empty word e, then F forms a group, called the free group of rank |I| over the free generators
{fi | i € I}, where the inverse of a reduced word f := f;'--- f;" is given by fli=fro e
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Before we start regarding the Banach-Tarski-Paradox, we will first observe (as some kind of
"warm-up”)...

2 A Nonmeasurable Set of Real Numbers

Let ©(X) denote the Lebesgue measure of some set X C R. p is countably additive, and for
u([a, b]) we obtain u([a,b]) =b— a.
Now we define the relation ~ by

Ty <= z—yeqQ.

It is easily shown that ~ is an equivalence relation, so we can partition X := [0, 1] into the pairwise
disjoint equivalence classes [z] :={y € X | y ~ x}; we denote M := {[z] | x € X}.

Using the Aziom of Choice we find a set of representatives M C X for M, so for every z € R
there exists an unique y € M and an unique g € Q such that x =y + q.

If we now define
M, = {y+qlyeM}

for each ¢ € Q N [—1, 1], then all M,s are disjoint and {M, N [0,1]} form a countable partition of
[0, 1].

Suppose that M is measurable, then p(M) is either zero or positive and u(M,) = u(M) for all
geQn[-1,1].

27At first glance, the Banach-Tarski Decomposition seems to contradict some of our intuition about physics —
e.g., the Law of Conservation of Mass, from classical Newtonian physics. Consequently, the Decomposition is often
called the Banach-Tarski Paradox. But actually, it only yields a complication, not a contradiction. If we assume a
uniform density, only a set with a defined volume can have a defined mass. The notion of "volume” can be defined
for many subsets of R3, and beginners might expect the notion to apply to all subsets of R3, but it does not. More
precisely, Lebesgue measure is defined on some subsets of R3, but it cannot be extended to all subsets of R3 in a
faghion that preserves two of its most important properties: the measure of the union of two disjoint sets is the sum
of their measures, and measure is unchanged under translation and rotation. Thus, the Banach-Tarski Paradox
does not violate the Law of Conservation of Mass; it merely tells us that the notion of "volume" is more complicated
than we might have expected.” (Eric Schechter)




If u(M) =0, then ([0, 1]

) < >, #(My) = 0, which is obviously false.
But if on the other hand p(M,) >

>0, t
wl=12) = Y (M) = o
g€un[~1,1

which is also impossible!
So M is not measureable! #

3 The Banach-Tarski-Paradox

We know want to realize the idea descripted in Example 1.5.
Remembering the definitions 1.6 and 1.4 we can show the following

3.1 Lemma Suppose F to be a free group of rank 2 which operates on itself by multiplication
from the left: fe f:= ff. Then F is F-paradox.

Proof: Suppose F := ({0, 7}) and W (p) to be the set of all words in F which start with an p on
the left. Then we get the following partition of F*:

= {JUW () UW (@ HuW(r)uw(r 1),

and since ce W (o) = {elUW (e YUW(r)UW(r ') and Te W(r7 1) = {eJUW(r~H) U
W (o) UW (o~1), we obtain

F=W(o)UceW(o ") and F=W(r)UreW(r 1),
so I is F-paradox. #

3.2 Lemma Suppose a group G which operates on the set X. Furthermore let G be G-paradox
and suppose that every g € G \ {e} has no fixpoint.

Then X is also G-paradox. Especially we have by using Lemma 3.1:

If F is a free group of rank 2 without non-trivial fixpoints, then X is F-paradox.

Proof: Suppose the notations like in Definition 1.4. We again define an equivalence relation ~

by
T~y = dgecr=gey.

If again M is the set of all equivalence classes, then we can use the Aziom of Choice to find
a set M C X of representatives for M.
Then we can show X can be written as the disjoint union

X=|Jgem.
geG
If we now define the sets
A = |JgeM and Bj = |J geMforalli,j
geEA; g€ B;

then these new sets are also pairwise disjoint and we find

m

UgLoA 2 Uh . B},

so X is also G-paradox. #



3.3 Lemma If we define ¢,y € SO3 by

I S Lo o
¢ = % % 0 and ¢ = 0 \%[ % )
0 0 1 0 22 3

then (¢, ) is free of rank 2.

Proof: (Sketch) Finally we have to show that an reduced form w € (¢, ) equals e if and only if
this reduced form is empty.
Therefore it is enough to show (by induction) that for every element w of length n, which
ends on the right side with an ¢, there exist numbers k,l,m € Z, 3 f [, such that

1 k 1
w| 0| =3"[1w2 ] #]|o0],
0 m 0
so w can’t be the identity. #

3.4 Theorem (HAUSDORFF-PARADOX) There exists a countable set D C 0S5 such that 955\ D
is SO3-paradox.

Proof: By Lemma 3.3 we know that there exists a free (sub)group F in SOj3 of rank 2, generated
by two rotations of SOj3. Since a non-trivial rotation in SOj3 leaves exactly two(!) points of
X invariant (the points where the rotation axis breaks through the sphere), we can define
the set D in 053 of all points which are invariant under at least one rotation in I, so D is
countable, since F' is countable.
Furthermore, F' operates on 053 \ D without non-trivial fixpoint, so we can use Lemma 3.2
to show that 953 \ D is F-paradox, and therefore also SOs-paradox. #

3.5 Definition Let the group G operate on X.

We call R, S C X congruent if there exists a g € G such that S = g e R.

We call A, B C X equally divisible under G if we can split A resp. B into the same number of
disjoint subsets Ay, ..., A, resp. By, ..., B, such that A; is congruent to B; for all i =1, ..., n.

3.6 Lemma If D C 95S; is countable, then 0S5 and 953\ D are equally divisible under G (in two
parts).

Proof: (Sketch) In a first step one has to show that there exists an angle ¢ and a corresponding
rotation matrix R, such that the sets D, Ry - D, Ri - D, ... are pairwise disjoint. The trick:
’Counting’ the angles, where the sets are not disjoint, gives countably many such angles, so
there are uncountably many angles for our purpose left!

Now we can split

0S; — (U R;;D)u(asg\UR:;,) = A1 U Ay

n=0 n=0
and
o0 o0
983\ D = (U R;;-D) U (asg\ U R;;) =: B1UB,.
n=1 n=0
Since By = Ry - A1 and By = Aj, the parts are congruent. #



Now we can apply this Lemma on Theorem 3.4 to show the following

3.7 Theorem 055 is SOs-paradox.

Proof: By 3.4, we can write 053 \ D as the disjoint unions
n m
0S5\ D = U gieA = U h; e B;
i=1 j=1
with pairwise disjoint sets A1, ..., A,, B1, ..., By, € 953\ D.
On the other hand, we obtain from 3.6, that

833\D = C1UCy and 0S5 = freC1 U fae(y

with disjoint sets C1, Cs.
We can complete the proof by observing
ik = Amgi‘l oCy, Bj, = Bj nhj‘l Cr, giy = frgi and D}, := frh;.

3.8 Corollary (BANACH-TARSKI-PARADOX) S5 is SO3-paradox.

Proof:
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